2.2. Gateways, Corridors and Global Freight Distribution: The Pacific and the North American Maritime / Land Interface

Jean-Paul Rodrigue
Department of Economics & Geography, Hofstra University, New York, USA

ABSTRACT

Transport corridors are receiving a growing level of attention, particularly with the surge of containerized maritime freight and the setting of more efficient - time and cost-wise - freight distribution systems. Global commodity chains, with a strong Pacific Asian component and controlled by large modal and intermodal freight operators, have become an operational reality. Particularly, the role of maritime shipping companies and more recently port holding companies is salient in long distance international transportation. Their commercial decisions in terms of the allocation and acquisition of their assets (modes and terminals) are a significant factor behind the dynamism of hubs and gateways. Consequently, the global economy is characterized by the emergence of maritime and inland transport corridors that are interfacing at gateways. While maritime corridors are flexible and subjects to the fluctuations of trade, inland corridors are fixed entities that command the access to vast hinterlands. This accessibility has been the object of much concern as it is linked with commercial and development opportunities, particularly with the ongoing trend related to the penetration of inland transportation, mainly by the setting of corridors and inland freight distribution centers. Few parts of the world have experienced such a surge in trade than the transpacific and its commodity chains. The functional integration of these chains has placed pressures on West Coast gateways and corridors. For instance major long distance rail eastbound segments, particularly in the United States, are facing acute capacity constraints. An outcome has been the exploration of alternatives such as new corridors (e.g. from Prince Rupert in Canada and Ensenada in Mexico) as well as changes in local terminal operations to increase throughput. In such a context of transpacific commodity chains and North American freight distribution, Western Canadian transport corridors are consequently been redefined by external factors which brings challenges but also opportunities.
1. INTRODUCTION: GLOBAL FREIGHT DISTRIBUTION

A Matter of Scale and Scope

The scale and scope of globalization has created an environment where the transport sector is coping to adapt. This is particularly the case for the transpacific realm where large distances are involved and because of the scale and scope of the production, distribution and consumption taking place along its facades. Transport corridors are receiving a growing level of attention, particularly with the surge of containerized maritime freight and the setting of more efficient – time and cost-wise – freight distribution systems. The massive maritime transpacific trade must find a correspondence in its inland counterpart. Under such circumstances, initiatives such as Canada’s Asia-Pacific Gateway and Corridor fit well the emerging reality of global freight distribution.

The process of globalization is certainly a dimension that has been discussed in length and from many different perspectives\(^1\). Among the most common factors identified are related to the exploitation of comparative advantages, mainly in terms of labor, information and telecommunication technologies, foreign direct investments and technology transfers. All these have helped create a clustered and spatially diffused global economy, particularly in terms of production and consumption. A very powerful and widely acknowledged trend in recent years has been the rapid industrialization of Pacific Asia, particularly China, and the enduring growth in the consumption of foreign goods in North America and Europe. Global trade is thus steadily growing despite the increase in the average distance of trade relations. Parallel to this growth, the need to reconcile spatially diverse demands for raw materials, parts and finished goods has placed additional pressures on the function of freight distribution and logistics.

Freight distribution is a physical activity where the transportation component is of prime importance. Paradoxically, because of its efficiency, freight transportation is almost invisible to the end consumer as the outcome (retailing) is seen, but not the process (distribution). Such a perspective often permeates public policy where the importance of freight transportation is often understated. Still, the global economy is based on the backbone of freight distribution, which in turn relies on networks established to support its flows and on gateways that are regulating them. Networks, particularly those concerning maritime shipping and air transportation, are flexible entities that change with the ebb and flows of commerce while gateways are locations fixed within their own regional geography. The spatial fixity of gateways imposes the usage of corridors. The Transpacific, due to the distances involved, is particularly prone to the setting of maritime and land corridors that enforce continuity in freight distribution.

Logistics and the Acceleration of Freight

Changes in the economic geography of the global economy are taking place at the same time than shift the operations of freight distribution. Freight is moving “faster”. The velocity of freight is more than simply the speed at which it moves along modes

(shipment speed). It also includes transshipment speed, the speed at which it moves from one mode to the other. Since many transportation modes, particularly maritime and rail, have not shown any significant speed improvements in recent decades, an indication that a speed barrier may have been reached, intermodal operations have become one of the most important elements behind the increased velocity of freight2. Containerization has been the fundamental factor behind such a radical change, as prior to containerization the shipment speed may have been adequate but acute delays linked with inefficient transshipment prevented any forms of time management of freight distribution. In many transport chains, the velocity of freight has reached a level where time-based management of distribution becomes a possibility. This enables a move from supply-based to demand-based logistics. It is very likely that any future improvements in the velocity of freight are solely going to be based on the function of transshipment. Improving the velocity of freight is one of the major challenges of containerization, particularly in view of the tremendous containership capacity that is about to be brought online and the more stringent time requirements of freight distribution.

Mounting Capacity and Time Pressures in Global Freight Distribution

The growth of global trade has resulted in mounting pressures, both in terms of capacity and time over freight transportation systems. One of the most prevalent accomplishments claimed by containerization concerns its time performance. It is quite clear that compared to the performance of port operations prior to containerization, the throughput levels of container terminals are phenomenal. A standard 5,000 TEU containership can be loaded or unloaded in less than 24 hours. Such capacity was unavailable beforehand and a standard break-bulk cargo ship could have taken weeks to be loaded or unloaded, most of it manually. Yet, as containerization gets increasingly embedded to the time constraints of modern freight distribution a surprising and enduring level of underperformance is noted. For instance, only 63\% of transpacific container vessels arrived on time3 at their scheduled port calls. This figure was 53\% for transatlantic port calls. The major factor behind delays is port congestion, particularly at the world’s main gateways4. Yet, congestion is a multidimensional concept that can include many causes, namely the lack of physical docking capacity forcing undue delays as containerships wait their turn. Transshipment capacity, particularly in terms of cranes can also impose delays as well as insufficient storage space within the terminal. The introduction of larger ships is a factor that can tie up transshipment capacity at a container terminal for longer periods of time, thus making this capacity unavailable (or reduced) to other adjacent berths (marine terminal design tries to insure that cranes can be allocated to several berths). Inland transportation is also a factor taking a growing level of importance since capital investment goes a long way at providing port terminals with a substantial capacity, particularly for new terminals that have significant untapped capacity. However, whatever the capacity of a terminal, the

3 On time means arrival on the scheduled day or the day before a scheduled port call.

inability of inland transport systems, such as trucking or rail, to handle freight flows bound to or from the hinterland can be a serious limitation. All the dimensions behind port congestion reinforce the need of an efficient maritime / land interface.

2. GATEWAYS, CORRIDORS AND THE MARITIME / LAND INTERFACE

Gateways and Hubs

Before going further, a clear conceptual representation goes a long way into insuring that real world processes are properly understood. In the emerging global geography of circulation, gateways and hubs are playing a crucial role (Figure 1):^5

- **Gateway.** A location that promotes the continuity of circulation in a transportation system servicing supply chains. It is the interface between different systems of circulation and includes terminal facilities, but also the numerous related activities such as distribution centers, warehouses and even insurance and finance. Gateways reap advantage of a favorable physical location such as highway junctions, confluence of rivers, seaboards, and have been the object of a significant accumulation of transport infrastructures such as terminals and their links. A gateway generally commands the entrance to and the exit from its catchment area and commonly imply a shift from one mode to the other (such as maritime / land). In other words, a gateway is a pivotal point for the entrance and the exit of merchandise in a region, a country, or a continent. The emergence of intermodal transportation systems reinforces gateways as major locations of convergence and transshipment and has modified their geography with increased locational flexibility. While major terminals have expanded and relocated to more peripheral locations, namely port facilities, many distribution centers have relocated even further away along corridors.

- **Hub.** A central point for the collection, sorting, transshipment and distribution of goods for a particular area. This concept comes from a term used in air transport for passengers as well as freight. It concerns collection and distribution through a single point such as the “Hub and Spoke” concept. A hub is thus the outcome of commercial decisions linked with a desired level of service in terms of frequency. System-wide the delays imposed by transshipments at the hub (instead of direct services) are compensated by higher frequencies of services between all points.

The transport system is subject to remarkable geographical changes even if many of its infrastructures are fixed. Flows, origins, destination and the modes used can change rather rapidly. What remains relatively constant are gateways, which can be seen as semi-obligatory points of passage, while a hub is a central location in a transport system with many inbound and outbound connections on the same mode. Gateways also tend to be most stable in time as they often have emerged at the convergence on inland transport systems while the importance of a hub can change if transport companies decide to use another hub, a strategy fairly common in the airline industry. Thus,

Gateways tend to be intermodal entities while hubs tend to perform transmodal (within a mode) operations.

![Diagram of Gateways and Hubs as Central and Intermediate Locations]

Figure 1 Gateways and Hubs as Central and Intermediate Locations

Corridors as Transport Paradigms

Transport corridors are commonly linking gateways to the inland. The functions of centrality and intermediacy are particularly relevant since one focuses on gateways as an origin or destination of traffic while the other focuses on gateways as intermediate locations where transshipment is performed. While central locations obviously correspond to large metropolitan areas, intermediate locations have developed a rather unique geography. Corridors themselves can be understood within three main paradigms (Figure 2).
The first paradigm is the most traditional as far as geographical theory is concerned. The central places theory mainly considers cities as structurally independent entities that compete over overlapping market areas. Under the location and accessibility paradigm an urban region is considered as a hierarchy of services and functions and the corridor a structure organizing interactions within this hierarchy. Transport costs are considered a dominant factor in the organization of the spatial structure, as the hinterland of each center is the outcome of the consumers’ ability to access its range of goods and services. Because of higher levels of accessibility along the corridor, market areas are smaller and the extent of goods and services being offered are broader. Thus, differences in accessibility are the least significant along the corridor. This applies well to the consumption based functions of a corridor.

The specialization and interdependency model considers that some cities can have a level of interaction and that transportation could be more than a factor of market accessibility, but also of regional specialization and of comparative advantages. The Megalopolis concept introduced by Gottmann in 1961 acknowledges the creation of large urban corridors structured by transportation infrastructures and terminals maintaining interactions. Accessibility and economies of scale, both in production and consumption, are factors supporting the development of such entities where urban areas are increasingly specialized and interdependent. The main assumption is that the accessibility provided by the corridor reinforces territorial specialization and interdependency along its main axis, and consequently the reliance on a regional transport system. This applies well to the production based functions of the corridor.

The distribution/flow model is one where a major gateway of an urban region acts as the main interface between global, national and regional systems. Under such a paradigm, three core structural elements are defining a regional corridor: 1) Gateways

regulating freight, passengers and information flows. 2) Transport corridors with a linear accumulation of transport infrastructures servicing a set of gateways. They provide for the physical capacity of distribution. 3) Flows, their spatial structure and the underlying activities of production, circulation and consumption. The corridor becomes a logistically integrated axis.

The Maritime / Land Interface

The maritime / land interface concerns the relationships between maritime freight distribution and inland freight distribution, which are two domains of freight circulation. Maritime shipping is entirely dependent on the performance of inland freight distribution as it insures continuity in supply chains. While economic activities, such as production and retailing are built on the concept of interdependency, distribution mainly forms a derived outcome of this interdependency. Yet, the maritime / land interface is particularly important for long distance trade brought by globalization. Thus, the growing distances at which freight is being carried in addition to a surge in freight volumes have created multiplying effects on the ability of the maritime / land interface to deal with this new environment. There are four major functional elements that define the maritime / land interface (Figure 3):

- **Foreland.** Although conventionally the foreland is a maritime space with which a port performs commercial relationships, in the current context it can be argued that maritime shipping networks are a more valid representation. The network represents the level of service offered by maritime shipping companies in terms of port calls, capacity and frequency.

- **Port system.** The set of intermodal infrastructures servicing port operations. Focus on gateways granting access to large domains on inland freight circulation.

- **Modes.** Each mode has technical constraints. They are structured as corridors accessing the hinterland and inland hubs acting as intermodal and transmodal centers. Modes represent one of the most difficult challenges in terms of reconciling the surge in containerized maritime volume and the capacity of inland transportation to accommodate these flows.

- **Hinterland.** Although conventionally the hinterland is the inland space a port maintains commercial relations with, the emergence of supply chain management has placed the freight distribution center (FDC) at the core on hinterland transportation. Macro-economic aspects linked with economic globalization have become particularly important to explain the dynamics of hinterlands.
Figure 3: Elements of the Maritime / Land Interface

The maritime / land interface can also take many transactional forms, such as exchanges of freight and information. There is a clear trend involving the growing level of integration between maritime transport and inland freight transport systems. Until recently, these systems evolved separately but the development of intermodal transportation and deregulation provided new opportunities, which in turn significantly impacted both maritime and inland logistics. One particular aspect concerns high inland transport costs, since they account anywhere between 40% and 80% of the total costs of container shipping, depending on the transport chain. Under such circumstances, there is a greater involvement of maritime actors (e.g. port holdings) in inland transport systems. The maritime / land interface thus appears to be increasingly blurred. Corridors are becoming the main structure behind inland accessibility and through which port terminals gain access to inland distribution systems. Since transshipment is a fundamental component of intermodal transportation, the maritime / land interface relies in the improvement of terminals activities along those corridors. Strategies are increasingly relying on the control of distribution channels to ensure an unimpeded circulation of containerized freight, which include both maritime and land transport systems.

Rail Corridors: Crucial Components of North American Inland Distribution

The continuity of the maritime space to insure a better level of service takes different forms depending on the region. For North America, rail transportation has seen the emergence of long distance corridors, better known as landbridges. The North American landbridge is mainly composed of three longitudinal corridors and is the

outcome of growing transpacific trade and the requirement to ship containerized freight across the continent. For Western Europe, barge systems are complementing trucking with inland waterways accounting for between 30 and 40% of the containers going through major gateways such as Rotterdam and Antwerp. Localized alternatives to improve inland distribution, such as the Alameda corridor, are implemented in addition to trans-continental strategies such as the existing North American landbridge and the planned Northern East-West Freight Corridor spanning across the trans-Siberian to the port of Narvik in Norway with an oceanic leg across the Atlantic. Still, rail freight corridors have a functional typology that simplistically can be differentiated by the distance (scale) they service (Figure 4).

<table>
<thead>
<tr>
<th>Type</th>
<th>Function</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short distance (within a gateway / hub)</td>
<td>Modal shift, improved capacity and throughput.</td>
<td>Switch carrying, Alameda, "Agile Port", Panama</td>
</tr>
<tr>
<td>Hinterland access (between a gateway and its vicinity)</td>
<td>Expand market area, reduce distribution costs & congestion</td>
<td>Rail shuttles, PIDN, Virginia Inland port</td>
</tr>
<tr>
<td>Landbridge (between gateways)</td>
<td>Long distance container flows, continuity of global commodity chains</td>
<td>North American landbridge</td>
</tr>
<tr>
<td>Circum-hemispheric (between gateways with a maritime segment)</td>
<td>Integrated global transport chains</td>
<td>Northern East-West Corridor</td>
</tr>
</tbody>
</table>

Figure 4: Types and Functions of Rail Freight Corridors

All the types of rail corridors fit within a specific freight distribution strategy but are imbedded to one-another:

- **Short distance.** Conventional transport economics underlines that rail is not a very suitable mode for short distances. Short distance rails corridors are thus established under very specific circumstances, namely where there is acute congestion and a modal shift to rail is required to improve the capacity and throughput of a gateway or hub. This often concerns on-dock rail facilities where containers are exiting / entering a port terminal on rail instead of on truck, but the destination of these rail shipments often goes much further inland. The Alameda corridor is an example of a short distance rail corridor of 20 miles (32 km) aiming at expanding the throughout of the San Pedro port cluster by shifting away containerized traffic from trucks. The “Agile Port” concept is an expansion of this strategy by linking directly on dock rail facilities to a nearby inland terminal where containers can be sorted by destination. On one side, the maritime terminal increases its throughout, in theory up to 40%, without additional land, while on the other side, a nearby inland rail terminal facing less land pressures is used to sort containerized shipments to their respective inland destinations. The Port of Tacoma is considering implementing this strategy. The Panama Canal Railway is a dedicated corridor for maritime shipping lines to shuffle containers to and from the Atlantic to the Pacific side.
Hinterland access. In this case, the rail corridor is a strategy to expand the market area of a gateway, often linking on-dock rail facilities to an inland distribution center where containers are moved to trucks to their final destination. It applies well when there is a dense hinterland such as along the Boston-Washington corridor where the Port Authority of New York and New Jersey has established the Port Inland Distribution Network to expend the port’s hinterland and provide alternatives for trucking over medium distances. The Port of Virginia has also established an inland rail terminal called the Virginia Inland Port. It is thus not surprising that most initiatives have taken place in this context.

Landbridge. A landbridge is a long distance continental rail corridor linking gateways, which insures the continuity of global commodity chains. The North American landbridge is mainly the outcome of growing transpacific trade and has undergone the containerized revolution; container traffic represented approximately 80% of all rail intermodal moves. Landbridges are particularly the outcome of cooperation between rail operators eager to get lucrative long distance traffic and maritime shippers eager to reduce shipping time and costs, particularly from Asia.

Circum-hemispheric. This goes beyond rail corridors to integrate a sequence of maritime and land transportation corridors in a seamless fashion. A circular transport chain across a hemisphere is thus established. Such a corridor does not yet exist and is likely to be decades away. The Northern East-West Corridor the Atlantic with the Pacific through the transsiberian has been in the design phase for decades.

3. PACIFIC ASIA AND GLOBAL TRADE

The Peculiar Foundations of Contemporary Global Trade

In the current context, investigating transpacific trade, gateways and corridors is at start an investigation in macro-economic and physical imbalances. Any practitioner and policy maker should be aware of these forces as they substantially shape the transport sector. Considering that freight distribution is derived from, albeit at the same time strongly influence, the sphere of production, the processes that have taken place along the Pacific Rim impacted international transportation and expanded the importance of gateways and corridors. Three main factors are behind macro-economic imbalances, two of which are well known, but the third has become the main force at play in recent years:

Comparative advantages are a well-known force as they provide strong incentives to consider new locations, particularly if costs differences are significant. They have permitted to keep production costs low and the price of several consumption goods has actually declined due to the “China effect”.
- **Foreign direct investments** are the means taken to exploit the comparative advantages and involve a transfer of capital and technology and its accumulation as an infrastructure or a mean of production.

- **Debt and asset inflation** is a much less known but more pervasive factor. The deindustrialization of America has been accompanied with stagnating and even declining wages for a period of over 20 years. After the stock market decline in 2001, the Federal Reserve substantially reduced interest rates and flooded the global economy with liquidity (debt), which triggered a wave of asset inflation and massive quantities of debt contracted by the American consumer. This debt is likely to be defaulted on, one way or the other.

The main macro economic imbalances have an outcome in the physical world of freight flows. This can be observed in international trade figures, in the flows of containers and in the transportation rates.

The Rationale of the “China Effect”

The emergence of China in the global manufacturing market had profound impacts in terms of the volume and pricing of a wide variety of goods. Several factors must be considered in the rapid and massive emergence of China. From an internal market perspective, China is going through its peak years of demographic growth with a stabilization of its population expected to reach 1.5 billion by 2040. Thus, about 10 million new workers are entering the labor market each year, placing intense pressures on financial, economic and industrial policies to accommodate this growth. From an historical perspective, China is eager to reclaim its former status as the world’s dominant economic power, a role it held until the 18th century. All these factors provide a strong impetus, either implicit or explicit to undertake strategies, many macro-economically unsound, aimed at accelerating economic growth and the modernization of China.

![Figure 5: Share of Global Manufacturing Output, 1993-2003](image)

9 Source: UNIDO
The share of China in global manufacturing, about 7% of its value (Figure 5), may be understated, particularly because the Yuan was kept devaluated compared with other currencies; it “lost” almost 50% of its value in comparison with the USD between 1993 and 2003. During that period, China mostly focused on the lower range of the added-value manufacturing process in addition to having low labor costs. The share of Japan in global manufacturing has however declined as it moved towards a more knowledge-based economy, from 22% in 1993 to 18% in 2003. A good share of manufacturing activities has been relocated to lower cost locations, particularly to China. Comparatively, Canada accounts for about 2% and the United States about 23% of the global manufacturing output.

The “Perpetual Motion Machine”

A great deal of the growth in global trade in recent years (2000-2006) is based on financial fundamentals that under normal circumstances would not have taken place. It can thus be argued that a share of the demand for freight is unsustainable, particularly across the Pacific. Since 2001, the policies of the Federal Reserve have dramatically shifted to extreme accommodation, which is related to the setting of the world’s first “perpetual motion machine” (Figure 6). This flood of global liquidity would have been seriously impeded if several actors were not willing to accept this systematic exportation of inflation and take the US dollar for its face value.

When the United States (individuals or corporations) purchase goods made in Asia, the transaction involves dollars in exchange for goods. So there are flows of capital in one direction and flows of goods in the other. In theory, this unbalanced flow should put strong downward pressures on the US dollar, making Asian exports less competitive (or at least more expensive).

Figure 6: The Dynamics of the World’s Most Significant Trade Relationship (China – United States)

The accumulation of foreign reserves, mainly USD, in China provides a large capital pool that can be used for investing in additional production capacities. The outcome is the creation of jobs, badly needed for the Chinese transition to an industrial society. In addition, China realizes the importance of the American market as the outlet of its export-oriented growth model, so favorable conditions must be maintained for this paradigm to continue. The huge trade imbalance with the US places pressures on the
Yuan. To accommodate this pressure China, Japan and Korea (countries having substantial trade surpluses with the United States) have established the largest buyer-financing scheme in human history by accepting large quantities of American debt. By buying American liabilities (mainly bonds, T-bills and mortgage backed securities) the flow of capital from Asia has helped maintain the value of the USD. This in conjunction with low interest rates pushed by the Federal Reserve has helped a significant inflation of American assets, mainly real estate. Consumers, in view of the growing paper value of their assets, have been encouraged to borrow against it and the great share of this borrowed money went into consumption. Bluntly, home equity loans were taken to pay credit cards used to pay for cheap (Chinese) imports. Thus the momentum was maintained in spite of the staggering imbalances it created.

In the early 2000s US attracted more than $2 billion per day that are used to purchase various debt instruments, accounting for about 80% of the world’s savings. The idea of a “global savings glut” was fallacious; it was a global credit creation glut taking the shape of American asset inflation which was recycled in foreign (Asian) markets and comes back as purchases of bonds, treasuries and other equities. More money (debt) has been created in the US since 2001 than in the preceding one hundred years combined. Who will be the main actor to lose in this scheme? The one that produces tangible goods in exchange of promises to pay or the one accumulating debt that is likely to be defaulted on in exchange of tangible goods? The more dollars China holds, the more the Chinese economy loses by exporting real wealth in exchange of promises to pay. The dependence of China on foreign trade has reached excessive levels with international trade accounting for 90% of its GDP in 2004. This distorts China’s economic growth as much as asset inflation distorts America’s economic growth.

The US is the consumer of last resort and several strategies were undertaken to keep American consumption going, mainly through the housing ATM. American savings rate are now negative implying that the only factor that keeps the American economy growing is further borrowing against inflated assets. This system appears unsustainable, as there is an over-accumulation of debt on one side and over-production on the other. The fact that China’s stock markets (notably Shanghai and Shenzhen) was among the worst performing in the world up to 2005 in spite of massive industrialization is an indication that despite all this growth the profit margins of most Chinese enterprises are very low, in the range of 2 to 5% in many sectors. A re-equilibrium in such a system, which began in 2007 with the collapse of large hedge funds and investment banks, is likely to have very serious consequences in international trade, maritime shipping and port hinterlands.

Acute Global Trade Imbalances

In terms of international trade, an overview of world’s largest exporters and importers underlines a unique situation (Figure 7):

- **Market size.** Imports are a good indicator of the size of a national market as well as the flows of merchandises servicing the needs of an economy. The United States, Germany, China and Japan are the world’s largest importers and consequently the world’s largest economies. Germany has recently become the world’s largest exporter, supplementing the traditional position
the United States held over the last 50 years. The integration of China to the global economy has been accompanied by a growing level of participation to trade both in absolute and relative terms, improving the rank of China from the 7th largest exporter in 2000 and to the 3rd largest in 2006. China has surpassed Japan both in the total value of its imports and exports.

- **Trade imbalances.** Some countries, notably the United States and the United Kingdom, have significant trade deficits, which are reflected in their balance of payments. The United States has reached a staggering trade imbalance. This aspect is dominantly linked with service and technology-oriented economies that have experienced a relocation of labor-intensive production activities to lower cost locations, making the American economy highly dependent on the efficient distribution of goods and commodities. Conversely, countries having a positive trade balance tend to be export-oriented with a level of dependency on international markets. Germany, Japan, Canada and China are among the most notable examples. China has a positive trade balance, but most of this surplus concerns the United States. It maintains a negative trade balance with many of its partners, especially resources providers.

Impacts on Containerized Flows

Container flows are quite representative of global trade imbalances, which have steadily been growing since the 1990s (Figure 8). For instance, there are 3 times as much containers moving from Asia to the United States (13.9 million TEUs in 2005) than there are from the United States to Asia. This implied a combined American imbalance of 9.6 million TEU with Asia and Europe.

![Figure 7: World's 10 Largest Exporters and Importers, 2006](image)

10 Source: WTO
By 2005, about 70% of the slots of containerships leaving the United States were empty with major container ports, particularly along the West Coast (e.g., Los Angeles and Long Beach) handling large amounts of empty containers, 2.3 million TEU alone were exported in 2005. The Asia-Europe trade route is facing a similar imbalance, but at a lesser level; a total of 4.3 million TEU. Thus, production and trade imbalances in the global economy are clearly reflected in imbalances in physical flows and transport rates. For Transpacific trade, it costs more per TEU for eastbound flows than for westbound flows, making freight planning a complex task for container shipping companies. For Asia-Europe flows, westbound rates are higher than eastbound rates. Thus, production and trade imbalances in the global economy result in imbalances in physical flows and transport rates. Even if eastbound trans-Pacific rates are lower than westbound trans-Pacific rates, in theory conferring an advantage to American exports, costs differences are so in favor of Asia (China) that the American economy does not take much advantage of this benefit.

Impacts on Shipping Rates

Significant imbalances in containerized maritime freight rates have emerged along major trading routes. Prior to 1998, the “spread” between eastbound and westbound rates used to be relatively narrow, a couple of hundred USD per TEU (Figure 9). Rates were overall declining as economies of scale in the form of larger containerships being introduced to long distance shipping routes. From 1999, the rate spread increased to about a thousand USD per TEU, a reflection of the substantial global trade imbalances. On one hand, the Asian financial crisis of 1997 created a substantial devaluation of their respective currencies (with the exception of the Chinese Yuan which was pegged to the USD until 2005), which made exports cheaper. On the other hand, the same period was characterized by significant economic growth in North America with its associated consumption and a level of deindustrialization. American imports thus increased at a rate, which was significantly faster than exports. While rates between Europe and Asia and the United States and Asia have steadily declined and then remained constant, rates in the opposite direction (from Asia) have increased and are subject to some volatility mainly linked with periods of growth and recession. A similar trend exists in air cargo transportation as eastbound rates across the Pacific are more expensive than westbound rates.
GATEWAYS, CORRIDORS AND GLOBAL FREIGHT DISTRIBUTION

4. TRANSPACIFIC GATEWAYS: MIRROR IMAGES?

Transpacific Shipping Networks

The structure of long distance transport services has adapted to the realities of trade and production. Pendulum routes are very representative of intercontinental maritime

12 Source: UNCTAD, Review of Maritime Transport, Various years. (Note: that this data is not adjusted for inflation, so the real costs have actually declined even if a rate remains constant.)
shipping networks, such as the one serviced by the Hong Kong shipper OOCL (Orient Overseas Container Line; Figure 10). These routes take advantage of transpacific trade, but also have a component servicing intra Pacific Asian trade. The common network structure involves a series of port calls (5 to 7) within Pacific Asia and a couple of calls along West Coast ports that are in proximity. The cycle time for such services is between 35 and 50 days, depending on the number of port calls and the region serviced. There are also a few direct routes, gateway to gateway, that complete the cycle in about 25 days. There is little trade between the ports of the West Coast and cabotage regulations forbid foreign owned container shipping companies, so intra-coastal port calls are limited. The goal is to service a gateway from which the hinterland is accessed through rail corridors and also some long distance trucking. Pendulum services thus reflect very well the structure of production, distribution and consumption. For instance, the Northwest Express route (NWX) links Japan, Central / Northern China and South Korea. These economies have become closely integrated with a growth in the trade of parts and finished products. Japanese parts are shipped to coastal China manufacturing clusters and are assembled in finished or semi-finished goods, which are then shipped across the Pacific with a stop in South Korea where Korean exports are loaded. The same structure applies to the South China Express route (SCX), but with a focus on Southern China and Southeast Asia. The eastbound trade flows are most likely to involve finished goods bound for North American retailing distribution centers. In 2006, a new pendulum service, the Pacific North Express (PNX) was introduced. It has a 42 days loop with a similar port call structure than SCX, but calls Vancouver first when reaching North America.

The reasons why these routes can be called the “Wal-Mart Express” are not trivial, as the world’s largest corporation buys about 12% of all Chinese exports and the substantial amount of traffic linked with these movements is serviced by trans-pacific shipping routes. The American corporations involved in the imports of Asian goods by maritime container transportation reflect well the Transpacific structure of production, distribution and consumption. North American retailers account for a substantial share of containerized imports, mostly involving finished consumption goods bound to major inland freight distribution centers (Figure 11). The largest importers, such as Wal-Mart, Home Depot, Target, Sears, Ikea and Lowe’s, are all mass retailers relying on high volume and low margin goods, which are dominantly produced in China.

Transpacific Gateways

A closer look at maritime facades around the Pacific reveals a significant shift in the balance of commercial power. Pacific Asian container ports handled close to 70% of the global container traffic, which comparatively dwarfs the importance of the West Coast maritime facade. China alone account for 27% of the global containerized traffic. This traffic is dominantly handled by a limited number of gateway regions that are the convergence of inland freight transport systems.

Figure 10: Two Major Transpacific Pendulum Routes Serviced by OOCL, 2006 (The Wal-Mart Express)

Figure 11: Largest American Importers of Asian Goods through Maritime Container Transport, 2004 (in TEUs)14

An economic correspondence has thus been established across the Pacific, which is being articulated by major gateways. Because of the structure of distribution imposed by this correspondence, trans-Pacific gateways can be perceived as mirror images. While Pacific Asian gateways tend to be export-oriented and closely linked to manufacturing, West Coast ports tend to be import oriented and act as the early stages of North American distribution and retailing. Large manufacturing clusters, such as the Pearl River Delta, have emerged along coastal areas. The constraints of poor inland transportation in Pacific Asia have imposed a specific locational dynamic where manufacturers and suppliers tend to be located close to the port. There are no long distance corridors in Asia, except a latitudinal maritime corridor linking the major coastal areas. Pacific Asian gateways are thus mainly exit doors capturing dense but geographically limited hinterlands. In North America, good inland transportation along transcontinental corridors is linked with the continental distribution of imports. North American gateways are thus mainly entry points servicing a sparsely populated market with high economic density clusters with extensive hinterlands. Long distance trade corridors are thus of fundamental importance to the West Coast port clusters. For instance, half the cargo handled by the San Pedro Bay ports goes east of the Rockies. It reaches Chicago in 3 to 4 days and New York in 5 to 6 days. For the Puget Sound cluster,
long distance inland trade is even more pronounced, with about 80% of the traffic bound further inland.

Two new smaller container gateways are getting online, with Ensanada already having container facilities but poor hinterland access and Prince Rupert having excellent hinterland access and the container terminal came online in the Fall of 2007.

The hinterland effect on transport costs

The role and function of gateways is also strongly influenced by the nature of their hinterland. Figure 13 represents a synthetic structure of the respective hinterlands articulated by trans-pacific gateways. In China, Special Economic Zones (SEZ) are an implicit acknowledgment that the accessibility of the hinterland is weak so that activities must be located as close as possible to gateways. Empirical evidence has underlined that it costs more to move a container from inland China to a coastal port than across the Pacific and across North America. Reflecting these heavy constraints, most of the development in China has taken place along the coast; a process linked with the export-oriented development strategies. It was cheaper to bring labor to coastal SEZ than to bring the manufacturing activities to the labor, a process which is contradictory to what has happened to manufacturing in the global setting (manufacturing going to the labor). As such, more than 120 million peasants have left the countryside since the early 1990s in the largest migration in human history. There are thus many advantages reflecting the Chinese transport and economic reality in the setting of SEZ, such as proximity to global freight distribution and addition of the conventional advantages of clustering.

![Figure 13: Gateways and Hinterland Effect](image)

In North America, high capacity and efficient inland freight distribution has been linked with the setting of long distance trade corridors, dominantly supported by rail. The location of economic activities is consequently less constrained, particularly since it focuses on the freight distribution of finished goods.

The difference between Chinese and American inland transportation costs is quite eloquent as it would cost more to move a container from an inland location to a coastal Chinese ports than across the Pacific and across the North American continent, which includes port handling costs (Figure 14). This is a strong rationale why export oriented activities remain nearby the coast. It also underlines a tremendous unmet potential to improve inland freight distribution in China.

Global Port Operators: Positioned Along the Pacific

Global port operators have been an active component in global freight distribution in recent years. As of 2005, global port operators accounted for over 58% of container port capacity and 67% of global containerized throughput. A horizontal integration structure is being set up as port holdings acquire the management of transport terminals in a wide array of markets. A concentration of ownership among four major port holdings is observed; APM Terminals (controlled by the Danish maritime shipper Maersk), Dubai Ports World (acquired P&O in 2006), Hutchison Port Holdings (HPH, Hong Kong), and the Port of Singapore Authority (PSA). Several other port holdings exist, owned by specialized private companies or ocean carriers, but their focus is mostly regional. Each manages about 40 port terminals, and several smaller groups operated either by private holdings (Eurogate and SSA) or container shipping lines. Port holdings have positioned their assets among the largest port clusters of the Pacific (Figure 15). They have the strongest presence at major gateways, particularly in the Pearl River Delta. The highest level of competition however appears to be along the North American West Coast. For instance, in the San Pedro Bay, the main gateway to North America, 8 container terminals are operated by 6 different operators. It is also worth mentioning that HPH is positioned at the potential new gateway of Ensenada.

Figure 15: Port Holdings at Transpacific Container Ports

Transpacific Ports: Caught in Macroeconomic Trends

The significant growth of transpacific trade has placed pressures on ports to cope, particularly in terms of additional capacity. This problem is exacerbated by imbalanced container flows.

Hong Kong is the world's busiest container port being at the outlet of the world's main manufacturing region, the Pearl River Delta. An overview of the structure of its containerized traffic represents well the imbalances that have been discussed so far (Figure 16). Compared with other ports of the Pearl River Delta, these imbalances are however small. For instance, the port of Yantian, which is located just adjacent to Hong Kong, has a pure export-oriented function, as for each loaded container it imports, nine are exported. It mimics the Chinese development strategies of accessing global (western) markets through the use of its comparative advantages in terms of low production costs and the transshipment imbalances it implies. A staggering 80-90% of all the imported containers by Yantian are empty.

The Port of Los Angeles and the Port of Long Beach are the most important gateways of North America. Southern California accounts by itself for about 18% of all American trade. The San Pedro port cluster handled 60% of all the TEU of the west coast of North America in 2005. An overview of the nature of the containerized traffic transshipped by the Port of Los Angeles is very revealing (Figure 17).
While container traffic has been imbalanced for at least a decade, the situation has become even more imbalanced in recent years both for loaded and empty containers. Many of the loaded inbound containers are transferred to local or regional distribution centers where the contents of maritime containers will be put into domestic containers. This option is widely used because the railroads do not charge more to carry a domestic (53 footer) or a maritime (40 footer) container. Overall, three maritime containers of 2,400 cubic feet each can be transloaded into two domestic containers of 3,800 cubic

18 Source: Port Authority of Hong Kong
19 Source: Port of Los Angeles Authority, http://www.portoflosangeles.org/
feet each (7,200 versus 7,600 cubic feet), more than compensating for the incurred costs and delays.

![Diagram](http://www.portvancouver.com)

Figure 18: Containers Handled by the Port of Vancouver, 1997-2006 (in TEU)

Since 2001, the port of Vancouver has shifted from an export-oriented port towards a more prevalent import function (Figure 18). This is a good deal attributed to the decision in 2001 by OOCL, NYK and Lykes Lines (purchased by Hapag Llyod in 2005) to call Vancouver first for their transpacific routes with strategic pendulum routes to the production clusters of Pacific Asia. This accelerated the shift in the general balance of inland freight traffic and a change in the port's hinterland with a growth of new markets, particularly in the United States. The strike at major American West coast ports in 2002 also enabled Vancouver to capture additional cargo. Two major global port operators are present; DPW (Centerm; formerly P&O) and OOCL (Vanterm and Deltaport through TSI Terminal Systems). Vancouver is actually the only North American holding of DPW, now the world’s largest port operator, as its attempt to purchase the American assets of P&O in 2006 was sidetracked for political reasons.

5. **CORRIDORS AND NORTH AMERICAN INLAND FREIGHT DISTRIBUTION**

North American Corridors

A North American lattice of trade corridors where freight distribution is coordinated by major metropolitan freight centers (MFC) has emerged in the recent decades (Figure 19). While MFCs are significant markets by themselves, they also command distribution within the market areas they service as well as along the corridors they are connected to. They thus have a significant concentration and logistics and intermodal activities at specific locations. The ongoing accumulation of these activities has led in many cases to the creation of “central freight districts”. The extent of the market area of a MFC is

20 Source: Vancouver Port Authority, http://www.portvancouver.com
mainly a function of the average length of domestic truck freight haul, which is around 550 miles (880 km). Like many segments of the North American economy and territory, globalization and integration processes, namely NAFTA, have impacted on the nature and function of continental production, consumption and distribution. For international trade, the gateways of this system are major container ports along coastal areas from which long distance trade corridors are accessed. About a third of the American trade took place within NAFTA in 2000, mainly through land gateways (ports of entry) that are gateways in the sense that they are obligatory points of transit commanding access to the United States. For truck and rail flows, virtually no intermodal activities take place at land gateways, although several distribution centers nearby borders and along corridors.

Land gateways are dominantly servicing an import function, expanded under NAFTA trade, and connected to corridors of continental freight circulation. These include three main longitudinal (north, central and south) and four latitudinal (west coast, central, NAFTA and east coast) axes. The NAFTA Corridor links the two largest land gateways of North America, Detroit, Michigan and Laredo, Texas. It dominantly relies upon trucking as about 65% of the value of the NAFTA trade is serviced by this mode. However, it is far from being a continuous corridor as northbound flows of Mexican imports and the southbound flows of Canadian imports dwindle as the distance from their respective borders increases.

Figure 19: Main North American Trade Corridors and Metropolitan Freight Centers
North American Rail Corridors

Rail is of primordial importance to support long distance trade corridors in North America. It accounts for close to 40% of all the ton-km transported in the United States, while in Europe this share is only 8%. The emergence of landbridges is a good example of the setting of intermodal nodes along transport chains. Rail freight in the United States has experienced a remarkable growth since deregulation in the 1980s (Staggers Act) with a 77% increase in tons-km between 1985 and 2003. A significant share of this transformation concerns the emergence of long distance rail freight corridors linking the two major gateway systems of North America; Southern California and New York/New Jersey via Chicago. This represents the most efficient landbridge in the world, which considerably reduces distances between the East and the West coasts. Thus, the North American landbridge is mainly the outcome of growing transpacific trade and has undergone the containerized revolution; container traffic represented approximately 80% of all rail intermodal moves. Landbridges are particularly the outcome of cooperation between rail operators eager to get lucrative long distance traffic and maritime shippers eager to reduce shipping time and costs, particularly from Asia.

Continuity within the American rail network is far from being practical as major regional markets are serviced by specific rail operators. Mergers have improved this continuity but a limit has been reached in the network size of most rail operators (Figure 20). Attempts have been made to synchronize the interactions between rail operators for long distance trade with the setting of intermodal unit trains. Rail companies have their facilities and customers and thus have their own markets along the segments they control. Each rail system is the outcome of substantial capital investments occurring over several decades.

The Problem of transmodal operations

Interchange is a major problem between segments controlled by different rail companies, particularly since many networks were built to gather market share and regional control over rail freight services. Until the last two decades, this did not present too many difficulties since transmodal rail (movements between different segments of the rail system) operations were comparatively small. However, with a surge of transcontinental rail shipments, rail operators are bound to further address transmodal issues. An analogy can be made with network alliances that took place in the airline industry. The outcomes were increased revenue, costs reductions (shared services and facilities), a better level of service and a wider geographical coverage. Rail networks are obviously much more constrained in this process since they have a high level of spatial fixity – by far the highest of any mode. This is the reason why mergers and acquisitions is a more common expansion strategy. They have added numerous efficiencies to the rail system, notably a more centralized control and the reduction of duplicated facilities (e.g. maintenance). Only 7 Class 1 carriers remained in the United States.

States as of 2005, down from 39 in 1980 and 71 in 1970. It is unlikely that additional mergers will take place, mainly due to the size the networks have achieved (diseconomies of scale) and an oligopolistic situation that could trigger anti-monopolistic interventions from the Federal Government.

Looking beyond the system of maritime container terminals that are the gateways of most of the long distance corridors, a system of inland intermodal and transmodal facilities is emerging and articulating corridors (Figure 21). This articulation involves two major stages. The first stage is composed of maritime rail gateways, which are mainly large rail yards where freight coming from the nearby port complex is assembled for inland rail distribution. Several are linked with on-dock rail facilities but a great share of the traffic involves transloading from trucks carrying containers from the port terminals. Some freight is also coming from distribution centers that have repackaged the contents of maritime containers into domestic containers (53 footers), which have a higher capacity and are more suitable for inland distribution.

The second stage concerns transmodal rail operations, which are required because of the market and ownership fragmentation of the North American freight distribution system. There are 9 major locations that appear suitable to begin the foundation of a transmodal rail freight distribution system in North America; six in the United States and three in Canada (Figure 21). Each transmodal hub could act as a gigantic funnel, collecting the freight of all the major gateways. Chicago is obviously on top of the list because it handles a very high share of the rail traffic, 13.98 million TEU in 2004 (up from 12.4 in 2003), about 50% of the American rail freight. It acts as North America’s primary consolidation and de-consolidation center and is implicitly the chokepoint of the continental rail system.

However, the interactions between the major rail terminals belonging to different rail operators in Chicago’s metropolitan area is far from being efficient. A significant share of the containerized freight has to be hauled by truck between rail terminals. This involves about 4,000 cross-town transfers each day averaging 40 kilometers.
Maritime Shippers and Port Operators Moving Inland?

It has been underlined that there is an emerging tendency towards a higher level of integration between maritime and inland freight transportation. While this integration takes a functional form with intermodal and transmodal operations, it is also expected that integration will also involve investments, asset allocation and ownership. In this context, many maritime shipping companies are “moving inland” either by taking control of existing companies and their assets or creating new ventures involving the setting of new distribution networks. The rationale behind this process is multidimensional, but mainly concerns an attempt at greater value capture within freight distribution and commodity chains, particularly since profit margins in containerized maritime shipping are low (in the range of 2%). It also helps insuring a better level of control over supply chains and being able to offer more reliable freight distribution services. Doing so also involves the capture of additional value through customer retention and expansion. Already, the maritime shipping conglomerate Maersk owns the rail freight operator European Rail Shuttle, which mainly calls from the ports of Rotterdam and Antwerp towards a variety of destinations inside Europe (particularly the Ruhr region). It carried in 2005 more than half a million TEUs. Also, MSC and Hapag Lloyd are rail operators servicing specific segments of the European hinterland. Since national rail networks are still state owned in Europe, specific rail time slots on specific rail corridors can be leased to a private operator. A North
American dimension to this process is very problematic, namely due to the nature of ownership of the rail system, which is private. Consequently, it remains to be seen how maritime shipping companies will establish their inland freight distribution strategies in North America. Possible outcomes could involve joint ventures with existing rail companies or even (much less likely) the purchase of specific rail corridors.

Perspectives for Western Canada

If a closer attention is placed on the area of concern by Canada’s Asia-Pacific Gateway and Corridor Research Consortium, the containerized freight market has a low and clustered density, but with several opportunities as far as commodities (e.g. raw materials and agricultural products) are concerned. Still, an important component of the corridor’s function is long distance trade to and from the Pacific’s gateways with the major markets of the Midwest and Eastern Seaboard. Transmodal operations in the Canadian context are likely to take the form of a bifurcation strategy. Since the ownership spans the continent from east to west, as opposed of the ownership of American rail companies which is fragmented along the Chicago / New Orleans axis, transmodal operations would involve a separation of the traffic continuing within Canada and the traffic heading towards the United States. This could take place at three major locations: Winnipeg, Regina and Calgary. Canadian rail companies (CN and CP) are already positioned to do so with the control of substantial assets accessing Chicago and other locations in the United States.

A system of inland ports in Western Canada could work as a major sorting facility and load centers. Unsorted containers could be directly moved away from on-dock rail terminals of ports like Vancouver, Seattle-Tacoma and Prince Rupert, increasing their respective throughput, and then brought to inland ports such Calgary, Edmonton, Regina or Winnipeg where unit trains bound for specific large North American markets could be assembled. Many initiatives to improve rail infrastructure (extended siding and double tracking of several rail sections) between Vancouver and Calgary as well as between Regina and Calgary are under way, which will obviously increase the corridor’s capacity.

Prince Rupert, as a new container gateway along the North American West Coast, follows the standard model where a private operator leases the terminal and operates it on a per lift basis (Maher being the terminal operator). The rail connection, operated by CN, aims at direct non-stop intermodal services to Chicago in about four and a half days (107 hours). The major comparative advantage is thus the time component, which is jointly saved from shorter trans-Pacific crossings and inland rail transport. The decision to use the gateway will be made by maritime shipping lines as they allocate their fleets in terms of port calls and the frequency of those port calls and in which pendulum services they are part of. However, the quality and efficiency of inland distribution will be a factor behind the number and frequency of port calls.

The setting of the Prince Rupert gateway also present a potentially unique set of challenges because of the rigorous conditions in which the freight will be circulating, particularly in the winter. This raises questions about the “warm chain”, which is maintaining the temperature integrity of a product being transported. For a wide array

22 In May 2007, the Chinese maritime shipper COSCO made the commitment to call Prince Rupert
of goods, such as apparel, ambient temperature does not matter much, but many products have a level of tolerance to low temperatures (e.g. food, paints, beer & wine, adhesives, chemicals and coatings). Even high value electronic goods have a level of vulnerability. For instance, LCD displays should on average not be stored at temperatures lower than -30°C, otherwise damage to the liquid crystal matrix could result. Depending on the composition of the freight, this could create difficulties. Logistics can ill-afford an additional layer of sorting that would involve temperature sensitive freight (outside reefers), so this factor should be considered.

Figure 21: Western North America: Value of US Rail Imports by Port of Entry, 2002

6. CONCLUSION

Concomitantly with Transpacific trade Western Canada’s gateways and corridors, along with their American counterparts, are facing a new commercial environment, which mainly involves the emergence of global production networks and the associated rebalancing of flows of the global economy. Among the numerous developments that can be anticipated in the coming years, a continuing growth in the amount of tons and tons-km would appear at first glance to be rather obvious and almost taken for granted. Such a setting would imply additional demands on modes and terminals and pressures to provide investments in freight distribution systems. However, because of macro-economic conditions pertaining to the American economy, the growth in freight flows over the next decade is likely to be less significant than expected. Since debt can be defined as reduced future consumption at the expense of present consumption, the staggering amount of debt accumulated be the American economy, many of which
accumulated in unproductive sectors, is likely to imply serious reductions in future (Chinese produced) consumption.

Within the framework of the global economy, a structured global freight distribution system is emerging with a reliance on integrated freight transport systems. Gateways are fundamental elements that perform intermodal operations while hubs perform transmodal operations. Jointly, they support the geographical and functional integration brought by the emergence of global production networks. Geographical integration - the exploitation of the comparative advantages of the global economy - has led to the extension and more complex supply chains while functional integration has favored a high level of control and synchronization of flows along supply chains. Gateways and hubs are thus effectively capturing and adding value within global supply chains. They are also facing intensive competition with other gateways when they service similar markets and even within nodes when several terminal operators and freight forwarders are present. This is particularly the case for Western Canada where the hinterland is of limited economic size and Transpacific traffic must be captured to generate additional growth. There are thus many challenges and opportunities in the insertion of gateways and corridors in global production networks. Among the most notable are:

- The global economy and its arbitrage in terms of labor costs, has led to acute trade imbalances that transport systems have to cope with. International trade flows currently reflect significant disequilibrium in the global geography of production and consumption. On the short and medium terms, there will be pressures to cope and manage with the disequilibrium, such as the number of empty containers. In such a context, many gateways will be hard pressed to cope with traffic imbalances while capturing and adding value to the flows they handle.

- Since supply chains are closely integrated entities, freight transportation systems are increasingly reflecting this reality. The challenge remains about improving intermodal as well as transmodal movements along corridors. While the intermodal issue received a lot of attention, transmodal imperatives have somewhat been neglected in spite of their strategic importance as they reconcile the various scales of freight distribution. Although several aspects of this integration can be considered as capital investment issues, others require a higher level of modal collaboration. In many ways, globalization has forced many transport providers to adopt a wider perspective that goes beyond the freight distribution segments they control.

- In view of additional frictions in logistics, particularly congestion and the likeliness of long term raises in energy prices, a new modal balance is likely to be achieved where each mode will be used in it most cost effective way while abiding to time constraints of contemporary freight distribution. Therefore, the gateways and corridors offering the most efficient alternatives in terms of time, costs and energy efficiency will have an advantage over others. Competitive advantages are thus increasingly
derived from the whole transport chain in which corridors and gateways are component.

The fact that North American freight corridors are a trans-jurisdictional issue involves two major dimensions. First, the commercial context is shaped by forces well outside the control and to some extent the comprehension of any political jurisdiction; globalization has seen to that. Second, freight transportation is mostly a private industry and the allocation of assets is the outcome of profit seeking and efficiency maximizing strategies. Under such circumstances, public policy should take account of the tremendous flexibility of freight distribution and implicitly acknowledge this new environment. Thus, attempts by the State to regulate and “plan” will be met by the flexibility of the transport industry to sidetrack conditions judged to be unfavorable. The phase of deregulation that North American transportation went through in the last decades was mainly aimed at the national transport industry. It was little foreseen nor expected that global freight shipping companies, such as maritime shippers and port operators, would play such an important role. Still, global production networks require global distribution networks and the setting of gateways and corridors reflects this new global geography of freight distribution.