Outline

1. Algebraic sequences
2. Automatic sequences
3. Diagonals of rational power series
4. Congruence gallery
Algebraic sequences

A sequence \((a_n)_{n \geq 0}\) of integers is algebraic if its generating function \(\sum_{n \geq 0} a_n x^n\) is algebraic over \(\mathbb{Q}(x)\).

Catalan numbers \(C(n)_{n \geq 0} = 1, 1, 2, 5, 14, 42, 132, 429, \ldots\) \([A000108]\)

\[C(3) = 5 \]
\[C(n) = \frac{1}{n+1} \binom{2n}{n} \]

\[y = \sum_{n \geq 0} C(n)x^n = \frac{1 - \sqrt{1 - 4x}}{2x} \]
satisfies \(xy^2 - y + 1 = 0\).
Motzkin numbers $M(n)_{n \geq 0} = 1, 1, 2, 4, 9, 21, 51, 127, \ldots$ [A001006]

Motzkin numbers $M(n)_{n \geq 0} = 1, 1, 2, 4, 9, 21, 51, 127, \ldots$ [A001006]

$y = \sum_{n \geq 0} M(n)x^n$ satisfies $x^2y^2 + (x - 1)y + 1 = 0$.

Other algebraic sequences:

- sequence of Fibonacci numbers, etc.
- number of binary trees avoiding a pattern
- number of planar maps with n vertices
Let p^α be a prime power.

Question

If $(a_n)_{n \geq 0}$ is algebraic, what does $(a_n \mod p^\alpha)_{n \geq 0}$ look like?

Deutsch and Sagan (2006) studied Catalan and Motzkin numbers, Riordan numbers, central binomial and trinomial coefficients, etc.

\[
C(n)_{n \geq 0} = 1, 1, 2, 5, 14, 42, 132, 429, \ldots
\]

\[
(C(n) \mod 2)_{n \geq 0} = 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, \ldots
\]

Theorem

For all $n \geq 0$, $C(n)$ is odd if and only if $n + 1$ is a power of 2.

Deutsch and Sagan gave a combinatorial proof.
Motzkin numbers modulo 8

\[M(n)_{n \geq 0} = 1, 1, 2, 4, 9, 21, 51, 127, \ldots \] [A001006]

Deutsch, Sagan, and Amdeberhan conjectured necessary and sufficient conditions for \(M(n) \) to be divisible by 4.

... and that no Motzkin number is divisible by 8.

Theorem (Eu–Liu–Yeh 2008)

For all \(n \geq 0 \), \(M(n) \not\equiv 0 \mod 8. \)
To prove this, Eu, Liu, and Yeh determined $C(n) \mod 4$. . .

Theorem (Eu–Liu–Yeh)

For all $n \geq 0$,

$$C(n) \mod 4 = \begin{cases}
1 & \text{if } n = 2^a - 1 \text{ for some } a \geq 0 \\
2 & \text{if } n = 2^b + 2^a - 1 \text{ for some } b > a \geq 0 \\
0 & \text{otherwise.}
\end{cases}$$

In particular, $C(n) \not\equiv 3 \mod 4$ for all $n \geq 0$.
Theorem 4.2. Let C_n be the nth Catalan number. First of all, $C_n \not\equiv_8 3$ and $C_n \not\equiv_8 7$ for any n. As for other congruences, we have

\[
C_n \equiv_8 \begin{cases}
1 & \text{if } n = 0 \text{ or } 1; \\
2 & \text{if } n = 2^a + 2^{a+1} - 1 \text{ for some } a \geq 0; \\
4 & \text{if } n = 2^a + 2^b + 2^c - 1 \text{ for some } c > b > a \geq 0; \\
5 & \text{if } n = 2^a - 1 \text{ for some } a \geq 2; \\
6 & \text{if } n = 2^a + 2^b - 1 \text{ for some } b - 2 \geq a \geq 0; \\
0 & \text{otherwise}.
\end{cases}
\]
Liu and Yeh (2010) determined $C(n) \mod 16$:

Theorem 5.5. Let c_n be the n-th Catalan number. First of all, $c_n \not\equiv_{16} 3, 7, 9, 11, 15$ for any n. As for the other congruences, we have

$$c_n \equiv_{16} \begin{cases}
1 & \text{if } d(\alpha) = 0 \text{ and } \beta \leq 1, \\
5 & \text{if } d(\alpha) = 1, \alpha = 1 \text{ and } \beta = 2, \\
13 & \text{if } d(\alpha) = 1, \alpha \geq 2 \text{ and } \beta = 1, \\
2 & (\alpha = 2, \beta \geq 2) \text{ or } (\alpha \geq 3, \beta \leq 1), \\
6 & (\alpha = 2, \beta \leq 1) \text{ or } (\alpha \geq 3, \beta \geq 2), \\
14 & \text{if } d(\alpha) = 2 \text{ and } zr(\alpha) \equiv_{2} 0, \\
4 & zr(\alpha) = 1, \\
12 & \text{if } d(\alpha) = 3, \\
8 & \text{if } d(\alpha) \geq 4.
\end{cases}$$

where $\alpha = (CF_2(n + 1) - 1)/2$ and $\beta = \omega_2(n + 1)$ (or $\beta = \min\{i \mid n_i = 0\}$).

They also determined $C(n) \mod 64$.
$C(n) \mod 2^\alpha$ seems to reflect the base-2 digits of n.

Does this hold for other combinatorial sequences modulo p^α?

Are piecewise functions the best notation?
Kauers, Krattenthaler, and Müller developed a systematic method for producing congruences modulo 2^α (2012) and modulo 3^α (2013).

Let $\Phi(z) = \sum_{n \geq 0} z^{2n}$.

$$\sum_{n=0}^{\infty} \text{Cat}_n \ z^n = 32z^5 + 16z^4 + 6z^2 + 13z + 1 + (32z^4 + 32z^3 + 20z^2 + 44z + 40) \Phi(z)$$
$$+ \left(16z^3 + 56z^2 + 30z + 52 + \frac{12}{z}\right) \Phi^2(z) + \left(32z^3 + 60z + 60 + \frac{28}{z}\right) \Phi^3(z)$$
$$+ \left(32z^3 + 16z^2 + 48z + 18 + \frac{35}{z}\right) \Phi^4(z) + (32z^2 + 44) \Phi^5(z)$$
$$+ \left(48z + 8 + \frac{50}{z}\right) \Phi^6(z) + \left(32z + 32 + \frac{4}{z}\right) \Phi^7(z) \quad \text{modulo 64}$$
1. Algebraic sequences

2. Automatic sequences

3. Diagonals of rational power series

4. Congruence gallery
Theorem (Eu–Liu–Yeh)

For all \(n \geq 0 \),

\[
C(n) \mod 4 = \begin{cases}
1 & \text{if } n = 2^a - 1 \text{ for some } a \geq 0 \\
2 & \text{if } n = 2^b + 2^a - 1 \text{ for some } b > a \geq 0 \\
0 & \text{otherwise.}
\end{cases}
\]

Process the binary digits of \(n \), starting with the least significant digit.

This machine is a deterministic finite automaton with output (DFAO).
A sequence \((a_n)_{n \geq 0}\) is \textit{k-automatic} if there is DFAO whose output is \(a_n\) when fed the base-\(k\) digits of \(n\).

\[(C(n) \mod 4)_{n \geq 0} = 1, 1, 2, 1, 2, 2, 0, 1, \ldots\] is 2-automatic.

Let \(T(n) = (\text{number of 1s in the binary representation of } n) \mod 2\). The Thue–Morse sequence

\[T(n)_{n \geq 0} = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, \ldots\]

is 2-automatic. It is also \textit{cube-free}.
Examples of 2-automatic sequences

- Characteristic sequence of powers of 2:

- Minimal solution to the “infinite” tower of Hanoi puzzle
Automatic sequences have been studied extensively.

Büchi 1960: Every eventually periodic sequence is k-automatic for every $k \geq 2$.

Several natural characterizations of automatic sequences are known.
Theorem (Christol–Kamae–Mendès France–Rauzy 1980)

Let \((a_n)_{n \geq 0}\) be a sequence of elements in \(\mathbb{F}_p\). Then \((a_n)_{n \geq 0}\) is \(p\)-automatic if and only if \(\sum_{n \geq 0} a_n x^n\) is algebraic over \(\mathbb{F}_p(x)\).

Algebraic sequences of integers modulo \(p\) are \(p\)-automatic.

\[
y = 1 + 1x + 0x^2 + 1x^3 + 0x^4 + 0x^5 + 0x^6 + \cdots \text{ satisfies } xy^2 + y + 1 = 0
\]
in \(\mathbb{F}_2[x]\).

The proof is constructive.

Prime powers?
Outline

1. Algebraic sequences
2. Automatic sequences
3. Diagonals of rational power series
4. Congruence gallery
Converting algebraic to rational

The diagonal of a formal power series is

$$D \left(\sum_{n,m \geq 0} a_{n,m} x^n y^m \right) := \sum_{n \geq 0} a_{n,n} x^n.$$

Algebraic sequences can be realized as diagonals of rational functions.

Proposition (Furstenberg 1967)

Let $P(x, y) \in \mathbb{Q}[x, y]$ such that $\frac{\partial P}{\partial y}(0, 0) \neq 0$. If $f(x) \in \mathbb{Q}[x]$ is a power series with $f(0) = 0$ and $P(x, f(x)) = 0$, then

$$f(x) = D \left(\frac{y \frac{\partial P}{\partial y}(xy, y)}{P(xy, y)/y} \right).$$
Catalan numbers

\[y = \sum_{n \geq 0} C(n) x^n = \frac{1 - \sqrt{1 - 4x}}{2x} \]
satisfies \(xy^2 - y + 1 = 0 \).

Since \(C(0) = 1 \neq 0 \), consider \(y = 0 + \sum_{n \geq 1} C(n) x^n \), which satisfies

\[P(x, y) := x(y + 1)^2 - (y + 1) + 1 = 0. \]

Then \(\frac{\partial P}{\partial y}(0, 0) = -1 \neq 0 \mod 2 \), so \(\sum_{n \geq 1} C(n) x^n \) is the diagonal of

\[
\frac{y(2xy^2 + 2xy - 1)}{xy^2 + 2xy + x - 1} = \\
0x^0 y^0 + 1x^0 y + 0x^0 y^2 + 0x^0 y^3 + 0x^0 y^4 + 0x^0 y^5 + \ldots \\
+ 0x^1 y^0 + 1x^1 y + 0x^1 y^2 - 1x^1 y^3 + 0x^1 y^4 + 0x^1 y^5 + \ldots \\
+ 0x^2 y^0 + 1x^2 y + 2x^2 y^2 + 0x^2 y^3 - 2x^2 y^4 - 1x^2 y^5 + \ldots \\
+ 0x^3 y^0 + 1x^3 y + 4x^3 y^2 + 5x^3 y^3 + 0x^3 y^4 - 5x^3 y^5 + \ldots \\
+ 0x^4 y^0 + 1x^4 y + 6x^4 y^2 + 14x^4 y^3 + 14x^4 y^4 + 0x^4 y^5 + \ldots \\
+ 0x^5 y^0 + 1x^5 y + 8x^5 y^2 + 27x^5 y^3 + 48x^5 y^4 + 42x^5 y^5 + \ldots \\
+ \ldots .
\]
Let $R(x, y)$ and $Q(x, y)$ be polynomials in $\mathbb{Z}_p[x, y]$ such that $Q(0, 0) \not\equiv 0 \mod p$, and let $\alpha \geq 1$. Then the coefficient sequence of

$$D \left(\frac{R(x, y)}{Q(x, y)} \right) \mod p^\alpha$$

is p-automatic.

Here \mathbb{Z}_p denotes the set of p-adic integers.
Algorithm

Let $0 \leq d \leq p - 1$.

The **Cartier operator** is the map on $\mathbb{Z}_p[x, y]$ defined by

$$\Lambda_{d, d} \left(\sum_{n,m \geq 0} a_{n,m} x^n y^m \right) := \sum_{n,m \geq 0} a_{pn+d, pm+d} x^n y^m.$$

To compute an automaton for the coefficients of $D \left(\frac{R(x,y)}{Q(x,y)} \right) \mod p^\alpha$:

1. Compute the image of $\frac{R(x,y)}{Q(x,y)} = \frac{R(x,y) \cdot Q(x,y)^{p^{\alpha-1}}}{Q(x,y)^{p^{\alpha-1}}} - 1$ under each $\Lambda_{d, d}$.
2. Draw an edge labeled d from $\frac{s(x, y)}{Q(x, y)^{p^{\alpha-1}}}$ to $\frac{t(x, y)}{Q(x, y)^{p^{\alpha-1}}}$ if

$$\Lambda_{d, d} \left(\frac{s(x, y)}{Q(x, y)^{p^{\alpha-1}}} \right) = \frac{t(x, y)}{Q(x, y)^{p^{\alpha-1}}}.$$

3. Iterate, and stop when all images have been computed.
Catalan numbers modulo 4

\[\sum_{n \geq 1} C(n) x^n \text{ is the diagonal of } \frac{y(2xy^2 + 2xy - 1)}{xy^2 + 2xy + x - 1}. \]

By computing an automaton for a sequence mod \(p^\alpha \), we can answer...

- Are there forbidden residues?
- What is the limiting distribution of residues (if it exists)?
- Is the sequence eventually periodic?
Outline

1. Algebraic sequences
2. Automatic sequences
3. Diagonals of rational power series
4. Congruence gallery
Theorem (Liu–Yeh)

For all $n \geq 0$, $C(n) \not\equiv 9 \pmod{16}$.
Catalan numbers modulo 2^α

Theorem

For all $n \geq 0$,

- $C(n) \not\equiv 17, 21, 26 \mod 32$,
- $C(n) \not\equiv 10, 13, 33, 37 \mod 64$,
- $C(n) \not\equiv 18, 54, 61, 65, 66, 69, 98, 106, 109 \mod 128$,
- $C(n) \not\equiv 22, 34, 45, 62, 82, 86, 118, 129, 130, 133, 157, 170, 178, 253 \mod 256$.

Only $\approx 35\%$ of the residues modulo 512 are attained by some $C(n)$.

Open question

Does the fraction of residues modulo 2^α that are attained by some Catalan number tend to 0 as α gets large?
There are no known forbidden residues modulo 3^α.

Open question

Do there exist α and r such that $C(n) \not\equiv r \mod 3^\alpha$ for all $n \geq 0$?
Theorem (Eu–Liu–Yeh)

For all \(n \geq 0 \), \(M(n) \not\equiv 0 \mod 8 \).

Proof:
Motzkin numbers modulo p^2

Theorem

For all $n \geq 0$, $M(n) \not\equiv 0 \mod 5^2$.

(2 seconds; 144 states)

Theorem

For all $n \geq 0$, $M(n) \not\equiv 0 \mod 13^2$.

(10 minutes; 2125 states)

Conjecture

Let $p \in \{31, 37, 61\}$. For all $n \geq 0$, $M(n) \not\equiv 0 \mod p^2$.

Open question

Are there infinitely many p such that $M(n) \not\equiv 0 \mod p^2$ for all $n \geq 0$?

Eric Rowland (Liège) 2014 October 16
A few more well-known sequences

Riordan numbers: \(R(n)_{n \geq 0} = 1, 0, 1, 1, 3, 6, 15, 36, \ldots \) [A005043]

Theorem

For all \(n \geq 0 \), \(R(n) \not\equiv 16 \mod 32 \).

Number of directed animals:
\(P(n)_{n \geq 0} = 1, 1, 2, 5, 13, 35, 96, 267, \ldots \) [A005773]

Theorem

For all \(n \geq 0 \), \(P(n) \not\equiv 16 \mod 32 \).

Number of restricted hexagonal polyominoes:
\(H(n)_{n \geq 0} = 1, 1, 3, 10, 36, 137, 543, 2219, \ldots \) [A002212]

Theorem

For all \(n \geq 0 \), \(H(n) \not\equiv 0 \mod 8 \).
Let a_n be the number of $(n + 1)$-leaf binary trees avoiding $\text{\textbullet\textbullet\textbullet}$.

$(a_n)_{n \geq 0} = 1, 1, 2, 5, 14, 41, 124, 385, \ldots$ [A159771]

The generating function satisfies

$$2x^2y^2 - (3x^2 - 2x + 1)y + x^2 - x + 1 = 0.$$
Let a_n be the number of permutations of length n avoiding 3412 and 2143.

$(a_n)_{n \geq 0} = 1, 1, 2, 6, 22, 86, 340, 1340, \ldots$ [A029759]

Atkinson (1998) showed that $\sum_{n \geq 0} a_n x^n$ is algebraic.

Theorem

For all $n \geq 0$,

- $a_n \not\equiv 10, 14 \pmod{16}$
- $a_n \not\equiv 18 \pmod{32}$
- $a_n \not\equiv 34, 54 \pmod{64}$
- $a_n \not\equiv 44, 66, 102 \pmod{128}$
- $a_n \not\equiv 20, 130, 150, 166, 188, 204, 212, 214, 220, 236, 252 \pmod{256}$.

Eric Rowland (Liège) Congruences for diagonals of power series 2014 October 16 32 / 38
Apéry numbers

\[A(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2 \]

arose in Apéry’s proof that \(\zeta(3) \) is irrational.

\[A(n)_{n \geq 0} = 1, 5, 73, 1445, 33001, 819005, 21460825, \ldots \quad [A005259] \]

Straub (2014): \(\sum_{n \geq 0} A(n)x^n \) is the diagonal of

\[\frac{1}{(1 - x_1 - x_2)(1 - x_3 - x_4) - x_1 x_2 x_3 x_4}. \]

Computing automata allows us to resolve some conjectures.
Chowla, Cowles, and Cowles conjectured, and Gessel (1982) proved,

\[A(n) \mod 8 = \begin{cases}
1 & \text{if } n \text{ is even} \\
5 & \text{if } n \text{ is odd.}
\end{cases} \]

Gessel asked whether \(A(n) \) is periodic modulo 16.

Theorem

The sequence \((A(n) \mod 16)_{n \geq 0} \) is not eventually periodic.
Beukers (1995) conjectured that if there are α 1s and 3s in the standard base-5 representation of n then $A(n) \equiv 0 \mod 5^\alpha$. (Proved recently by Delaygue.)

Theorem

*Beukers’ conjecture is true for $\alpha = 2$.***
Let $e_2(n)$ be the number of 2s in the standard base-5 representation of n. If n contains no 1 or 3 in base 5, then $A(n) \equiv (-2)^{e_2(n)} \mod 25$.
Christol (1990) conjectured that if \((a_n)_{n \geq 0}\) is an integer sequence which
- is holonomic (satisfies a linear recurrence with polynomial coefficients) and
- grows at most exponentially,
then \((a_n)_{n \geq 0}\) is the diagonal of a rational function.

\((n!)_{n \geq 0}\) grows too quickly to be the diagonal of a rational function.

If the conjecture is true, then essentially every sequence that occurs in combinatorics is \(p\)-automatic when reduced modulo \(p^\alpha\).
Symbolic p^α

Write $n = n_\ell \cdots n_1 n_0$ and $m = m_\ell \cdots m_1 m_0$ in base p.

Lucas’ theorem:

$$\binom{n}{m} \equiv \prod_{i=0}^\ell \binom{n_i}{m_i} \mod p.$$

For the Apéry numbers, Gessel (1982) proved

$$A(n) \equiv \prod_{i=0}^\ell A(n_i) \mod p.$$

Our method doesn’t allow α to vary (for fixed p).