TIME VALUE OF MONEY

Future value: the value to which a single amount (PV) will grow after n years with compound interest at an annual interest rate of k percent is (p. 230)

\[FV_n = PV(1 + \frac{k}{100})^n \]

Present value: the value today of a single amount (FV_n) to be received in n years is (p. 235)

\[PV = \frac{FV_n}{(1 + \frac{k}{100})^n} \]

Perpetuity: the present value of a perpetual stream of cash flows of PMT per year is (p. 250)

\[PVP = \frac{PMT}{i} \]

Present Value Interest Factor for an Annuity of n payments at i interest ($PVIFA_{n,i}$): (p. 246)

\[PVIFA_{n,i} = \frac{1 - \frac{1}{(1 + i)^n}}{i} \]

Future Value Interest Factor for an Annuity of n payments at i interest ($FVIFA_{n,i}$): (p. 242)

\[FVIFA_{n,i} = \frac{(1 + i)^n - 1}{i} \]

(Ordinary) Annuity: the present value of a stream of PMT per year for n years is (p. 245)

\[PV = \frac{PMT}{i} \left[\frac{1}{(1 + i)^1} + \frac{1}{(1 + i)^2} + \ldots + \frac{1}{(1 + i)^n} \right] \]

(Ordinary) Annuity: the future value of a stream of PMT per year for n years is (p. 241-2)

\[FVA = PMT \left[\frac{(1 + i)^n - 1}{i} \right] \]

Annuity Due:

\[PVADUE = PMT \left[\frac{(1 + i)^n - 1}{i} \right] \]

\[FVADUE = PMT \left[\frac{(1 + i)^n - 1}{i} \right] \]

Effective Annual Rate (EAR): the effective annual rate on a loan given a simple rate and m compounding periods per year: (p. 256)

\[EAR = \left(1 - \frac{i_{\text{compounding periods}}}{m} \right)^m - 1 \]

PV with continuous discounting: (p. 281)

\[PV = \frac{FV_n}{e^{-nt}} \]

FV with more frequent compounding: (p. 257)

\[FV_n = \left(1 + \frac{i_{\text{compounding periods}}}{m} \right)^{nt} \]

APR = (the periodic rate) * (number of periods per year)

STOCK AND BOND VALUATION

Value of a Bond (p. 287):

\[V_B = \sum_{t=1}^{n} \frac{C_B + \frac{M}{(1 + k)^t}}{1 + k} \]

Approximation of a Bond's YTM (p. 293):

\[YTM = \frac{\text{INT} + \frac{M}{(1 + k)^n}}{\frac{M}{(1 + k)^n} - 1} \]

Value of Common Stock (p. 302):

\[V_C = \sum_{t=1}^{\infty} \frac{D_t}{(1 + k)^t} \]

Value of non-growing stock or preferred stock (p. 303):

\[\lambda_0 = \frac{D}{(k - g)} \]

Value of constant-growth common stock (p. 308):

\[k = \sum_{t=1}^{\infty} \frac{D_t}{(1 + k)^t} \]

RISK AND RETURN

Measures of risk and return:

Mean or expected return = probability-weighted average of possible outcomes

\[\mu = \sum_{i=1}^{n} \mu_i \cdot Pr_i \]

Variance = σ^2 = mean of squared deviations around the mean

\[\sigma^2 = \sum_{i=1}^{n} (\mu_i - \mu)^2 \cdot Pr_i \]

Standard deviation = $\sigma = \sqrt{\text{VARIANCE}}$

\[\sigma = \sqrt{\sum_{i=1}^{n} (\mu_i - \mu)^2 \cdot Pr_i} \]

Expected Return on a Portfolio (p. 193):

\[k_p = \sum_{i=1}^{n} \mu_i \cdot Pr_i \]

Variance of the Returns of a Two Security Portfolio:

\[\sigma_p^2 = \sum_{j=1}^{n} \sum_{k=1}^{n} (w_j \cdot \sigma_{jk})^2 \cdot Corr_{jk} \]

Standard Deviation of the Returns of a Two Security Portfolio:

\[\sigma_p = \sqrt{\sigma_p^2} \]